JENSEN TYPE QUADRATIC-QUADRATIC MAPPING IN BANACH SPACES
نویسندگان
چکیده
منابع مشابه
Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach
Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}
متن کاملApproximate mixed additive and quadratic functional in 2-Banach spaces
In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.
متن کاملOn the Quadratic Mapping in Generalized Quasi-banach Spaces
In this paper, we prove the Hyers–Ulam–Rassias stability of the quadratic mapping in generalized quasi-Banach spaces, and of the quadratic mapping in generalized p-Banach spaces.
متن کاملDecomposable quadratic forms in Banach spaces
A continuous quadratic form on a real Banach space X is called decomposable if it is the difference of two nonnegative (i.e., positively semidefinite) continuous quadratic forms. We prove that if X belongs to a certain class of superreflexive Banach spaces, including all Lp(μ) spaces with 2 ≤ p < ∞, then each continuous quadratic form on X is decomposable. On the other hand, on each infinite-di...
متن کاملapproximate a quadratic mapping in multi-banach spaces, a fixed point approach
begin{abstract}using the fixed point method, we prove the generalized hyers--ulam--rassiasstability of the following functional equation in multi-banach spaces:begin{equation} sum_{ j = 1}^{n}fbig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}big) =(n-6) fbig(sum_{ i = 1}^{n} x_{i}big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}end{abstract}
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2006
ISSN: 1015-8634
DOI: 10.4134/bkms.2006.43.4.703